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Abstract

In this report there is presented a discussion of the

theory of vibration of a paraboloidal shell of revolution.

The theory is that which is usually associated with the

work of A. E. H. Love. Observations are made concerning

the equations of motion which include both flexural and

membrane stresses, those which relate to flexural and mem-

brane stresses for shallow shells, and finally those which

apply to membrane stresses only.

Results are also presented for an extensive experimen-

tal study of the vibrations of two models of thin parabo-

loidal shells.

Professor of Mechanics, Rensselaer Polytechnic Institute

2,3 Graduate Student, Rensselaer Polytechnic Institute



NOMENCLATURE

a , • = surface coordinates

A , B = metric coefficients associated with the parametric
curves, a = constant and B = constant

0 = phase angle

l 2 = lineal strain components

R1 , R2 = radii of principal curvature

r , z = coordinates of points on paraboloidal surface

a scale factor of paraboloid

TI, T2 = components of stress resultants corresponding to
extensions in coordinate directions

G, G2= components of stress couples corresponding to
coordinate directions,

SI 2= components of shearing stress resultants in
tangent plane at a point and corresponding to
coordinate directions

N- , N2  = components of shear stress resultants in direction
S2 normal to the surface

u = displacement in latitudinal direction

v = displacement in meridional direction

w = displacement in direction normal to surface

Pn = natural frequency of nth mode

p = mass density of shell

h = thickness of shell

E = Young's modulus

V = Poisson's ratio

K1 , K2 = curvatures corresponding to principal directions

sI = distance on surface in latitudinal direction

S2 = distance on surface in meridional direction
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INTRODUCTION

In the technical literature there is an extreme paucity

of complete solutions of even the approximate equations of

motion of shells developed by A. E. H. Love. A few examples

may be cited such as solutions by E. Reissner [1] 4, W. H.

Hoppmann [2] and Naghdi and Kalnins 13]. As is well known

the reason for the difficulty lies in the complexity of the

differential equations defining the motion. Reasonably

tractable series solutions simply cannot be found. Conse-

quently it appears that reliable numerical results must

depend on the programming of suitable computers for specific

cases of interest. However, it will probably always be true

that analyses of the equations of motion subject to various

boundary conditions along with careful experimental deter-

minations of modal shapes and frequencies for various shapes

of shells will be necessary for building up reliable tech-

nological information concerning such problems.

In the present report a study is made of the vibrations

of paraboloidal shells of revolution. A development of

equations of motion is given along with experimental results

for two models of paraboloidal shells.

Numbers in brackets designate References at end of Report.
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GEOMETRICAL CONSIDERATIONS

The meridional cross-section of a paraboloid of revolu-

tion shown in Fig. 1 is a parabola defined by

r az (1)

The metric may be written

ds 2 = dSl2 + ds 2

s1  2

= A2 da2 + B2d 2  (2)

= (dr2 + dz 2 ) + r2do2

whence A = 1/71+ a.
v z

(3)

and B = r = a•

The principal radii of curvature may be written

- (4z + a)3/2

2ý_ (4)

and R2 = a2
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EQUATIONS OF FLEXURAL VIBRATIONS

The analysis will now be limited to the case of axi-

symmetric vibrations and the equations of motion developed

by Love may be written [ 4 ]

S(T1 B) T2•_B _N __ _AB~ h

)z ýz RI
A TB- -A hvB

N2 AB+ S - 0

(N 1B) + T1 AB + T2 All - ABphw = 0
z2 (5)

N2  = 0

S(GB)B
1( -GG2 - _- N1 AB = 0

)z ýz

and S2 = 0

These equations reduce to

(GTG 1) 3 B •B _GI

(TT 2) _B- + B 2 + (62- G ) -- B ABph= 0
3z 3z R 1 z R1 )z

and

T1  T2  1 1 ý(GIB) 1 G , 3B p

R1  R2  AB ýz A )z A 2z

(6)
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Since r = R2 sin a Equations (6) may be written

(T 1 - T2 ) cot a + T1 cos 2 a +*- 2 cosc a(G)2 G1)
a sina

2 cos5 a G1 - -L sec a phV = 0
a 2

and (7)

T1 cos3 a + T2 cos a + 2 Cos4 cos3 a(G 1 tan a)
a sin a

- cos a -a-phw = 0
S2

where ( ) refers to derivatives with respect to a.

The relations between strains and displacements may be

written in accordance with Love [4] as

E 1 dv w v 3. w

A dz R AB 2z R2

K= _ L L( w+1 L ) , and K2 _L 2B(I LLw +v)
A 3z A 3z R AB 3z A ýz R1

(8)

The stress-strain relations for isotropic material are taken

as

T Eh + C Eh-= (1l + 2 ) T2 = = (2 + yi)1-V 1-V
(9)

G - D(K 1 +vK) , and G2 = - D(K2 + VK1 )
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Considering Equations (7), (8), and (9) simultaneously the

equations of motion may be written

alw"' + a2 w' + a3 w' + a4 w + a5 v" + a6 v' + a 7v= a8

and (10)

b1 w"'II b2 w"' + b3 w" + b4 w' + b5 w + b6 v"' + b7 v"

+ b 8 v' + b 9 v = b1o

where the a.i's and b. 's are determined functions of a.

The complexity of these equations is obvious and it is

clear that at present an extensive programming operation for

high speed computers would be necessary to tabulate the

solutions.

Considerable simplifications in these equations result

if only shallow paraboloidal shells are considered. Such

simplifications will now be considered.

FLEXURAL VIBRATIONS OF SHALLOW

PARABOLOIDAL SHELLS OF REVOLUTION

If the shell shown in Fig. 1 is truncated so that its

base is given by a = 0 and

sin D0 0=

r0 0

with (- ) << 1
-R
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where r0 is given by

a = 0

Then the shell is approximately representable by the

osculating sphere at the apex. In fact if the surface of

revolution z = z(r) is expanded in a Maclaurin's series

at the apex we have

z 1 r 2  + 1 (z,,,)or 3  +

2A0  6

and furthermore if the shapes are limited to those for which

the cross-sectional curves are of second degree (ellipsoids,

parabolas) the approximations are provably satisfactory so

that one may use the results of the theory of vibration of

shallow spherical shells [2] to determine the approximate

modal shapes and corresponding frequencies of vibration for

shallow paraboloidal and ellipsoidal shells of revolution.

INEXTENSIONAL AND EXTENSIONAL VIBRATIONS

The theory of vibration which has been discussed so far

may be greatly simplified by considering only the purely in-

extensional motions or the purely extensional motions. The

inextensional type which depends on the assumption that the

length of line elements remain invariant under deformation

of the shell has been treated by Lin and Lee for the para-

boloid [5]. The limitations of such assumptions are obvious

-8-



and that type of vibration will not be considered further

in the present report.

The theory of extensional vibrations is a more applica-

ble theory, especially in the case of closed shells such as

spheres [6]. Briefly, it may be noted that if the flexural

couples G, , G2 are taken identically zero or the flexural

rigidity D is taken zero, Equations (10) reduce in complexity.

Since elastic free vibrations are harmonic in time, we

may write the displacement functions

v(a,t) = Z Vn(a) cos (Pnt + 9)

w(a,t) = Z wn(a) cos (pnt + 9)

Then with the assumptions which have been specified the equa-

tions of motion may be written as

d2 vn dv dw

da da da

+ n sin a pa2(1- v = 0n 4E

dvn
and PI _ 2 Vn + P3 Wn = 0da

where ai and Pi are relatively simple functions of a

and also involves pn

-9-



Obviously wn may be eliminated and one equation can

be written for vn as follows

d~v dv
A d--2 + B -- + C v = 0

da 2 da

where A, B, C are rather complicated functions of a

However, since the coefficients are non-zero at the apex

(a = O) the point a = 0 is a regular singular point and

the solution is expandable in series about such a point.

As a practical matter however, it is more straight-

forward to consider the two simultaneous equations for which

series solutions may now be written

A Dn+Sv = A~n S

W B Dn+S
w = ZB~n S

n = O, 1, 2, ...

and S is determined to be + 1 by usual methods [7]. It

has been shown that a power series solution exists for

S = + 1 and not for S = - 1.

Although straightforward the numerical calculations

for specific cases are still rather excessive for illustra-

tive purposes, especially when it is considered that the

present needs are in connection with problems which neces-

sarily involve flexural stresses.
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EXPERIMENTAL INVESTIGATION OF FLEXURAL VIBRATIONS

OF PARABOLOIDAL SHELLS OF REVOLUTION

Although solutions of the equations of motion for flex-

ural vibrations were not obtained in the present study, it

was considered to be instructive to perform experiments on

two models of' paraboloidal shells of revolution. The results

may serve ultimately to indicate the type of functions neces-

sary to serve as solutions to the equations of motion.

A sketch of the experimental model is shown in Fig. 2.

The various parameters necessary for a complete description

of the shell are provided. Also, the experimental apparatus

are shown in Fig. 3. The shells were driven at resonant

frequencies and the modal shapes painstakingly traced out

with the aid of crystal-type transducers.

The modal shapes and corresponding frequencies are given

in Tables No. 1, No. 2 and No. 3 for both fixed and free

boundary conditions.

ACKNOWLEBGMENTS

The authors wish to acknowledge their appreciation of

the support of the Ballistic Rezearch Laboratories of the

Aberdeen Proving Ground for the research project. In par-

ticular they wish to thank Dr. Joseph Sperrazza for useful

discussions of the problems relating to the research and

also to thank Mr. John W. Hanna of the BRL staff for the pro-

curement of the two excellent shell models.

-11-



REFERENCES

1. E. Reissner, "On Vibrations of Shallow Spherical Shells",
J. Applo Phys., 17, 1038-1042(1946).

2. W. H. Hoppmann II, "Frequencies of Vibration of Shallow
Spherical Shells", J. Appl. Mechanics, 28, 306-307(1961).

3. P. M. Naghdi and A. Kalnins, "On Vibrations of Elastic
Spherical Shells", J. Appl. Mechanics, 65-72, March 1962.

4. A. E. H. Love, Mathematical Theory of Elasticity, 4th Ed.,
Cambridge University Press, 514, (1934).

5. Y. K. Lin and F. A. Lee3 "Vibrations of Thin Paraboloidal
Shells of Revolution", J. Appl. Mechanics, 743-744,
December 1960.

6. W. H. Hoppmann II and W. E. Baker, "Extensional Vibrations
of Elastic Orthotropic Shells", J. Appl. Mechanics,
229-237, June 1961.

7. E. L. Ince, Ordinary Differential Equations, Dover, New
York, p. 396, (1956).

-12-



a- constanta

FIG. 1. PARABOLOIDAL SHELL OF REVOLUTION
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TABLE 2. NODAL PATTERNS AND FREQUENCIES

FOR PARABOLOIDAL SHELL OF REVOLUTION

FIXED BOUNDARY

SHELL HEIGHT = 18.5"

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6
1010 cps 820 cps 800 cps 890 cps 1070 cps 1740 cps

No. 7 No. 8
870 cps 780 cps

No. 9 No. 10 No. 11 No. 12 No. 13
2800 cps 2500 cps 1650 cps 1500 cps 1432 cpS

No. 14 No. 15 No. 16 No. 17
2750 cpS 2240 cps 2160 cps 2040 cps

0 0
No. 18 19 No. 20
3040 cps 2000 CPs 3200 cps
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